Piotr Orłowski
Paul Schneider
Fabio Trojani
HEC Montréal
USI
Swiss Finance Institute
Université de Genève
Swiss Finance Institute
\[ \frac{dF_t}{F_{t-}} = \mu_{t} dt + \sigma_{t-} dW_t + \int_{\mathbb{R}\setminus \{0\}}( e^x - 1 ) \, \nu_t(dx,dt) \]
\[ \int_t^T \int_{\mathbb{R}\setminus \{0\}} \left( x^3 + O(x^4) \right) \, \nu_s(dx,ds) \]
\[ r_i := \log{F_{t_i}} - \log{F_{t_{i-1}}}. \]
\[ S_{t,T} := \sum_{i=1}^N \left( \underbrace{\color{#0072B2}e^{r_i}-1 - r_i}_{\text{VIX}^2\text{ payoff}} -\frac{r_i^2}{2} \right) \overset{\mathbb{P}}{\longrightarrow} \sum_{t \leq s \leq T} \frac{1}{6} \left(\Delta J_s\right)^3 + O(J_s)^4 \]
Exposure to divergence of function of forward price \(\color{green}{\phi}(F_T)\) available through Breeden and Litzenberger (1978) and Carr and Madan (2001): \[ D_{\color{green}{\phi}}(F_T,F_t) := \color{green}{\phi}(F_T) \color{black}- \color{green}{\phi}(F_t) \color{black}- \color{green}{\phi}'(F_t)\color{black}(F_T- F_t) = \int_0^{\infty} \color{green}{\phi}''(K) \color{red}{O(F_T; K, F_t)} \color{black}dK \]
\[ D_{\phi}(F_T,F_t) + \sum_i \delta_i (F_T - F_i) \]
There is no \(\phi\) and \(\{\delta\}_{i=1}^{N_T}\) such that \(S_{t,T} = D_{\phi}(F_T,F_t) + \sum_i \delta_i (F_T - F_i)\).
\[ S_{t,T}= \sum_{i=1}^N \left( e^{r_i}-1 - r_i -\frac{r_i^2}{2} \right) = \underbrace{\phi_s(F_T,F_{0})}_{\color{green}{\bigstar}} + \sum_i \underbrace{\gamma_{i}\phi_v(F_T,F_i)}_{\color{purple}{\bigstar}} + \underbrace{\delta_i (F_T - F_i)}_{\color{orange}{\bigstar}}. \]
\(\color{green}{\bigstar}\) at time \(t_0\) buy a skewness swap
\(\color{purple}{\bigstar}\) at time \(t_i > t_0\) trade \(\gamma_i\) variance swaps \(\color{red}//\) \(\color{orange}{\bigstar}\) at time \(t_i > t_0\) trade \(\delta_i\) forwards
\[ \mathbb{E}^{\mathbb{P}}[S_{t,T}] - \mathbb{E}^{\mathbb{Q}}\left[ -\frac{1}{2}\log\left(\frac{F_T}{F_t}\right)^2 -\log\left(\frac{F_T}{F_t}\right)\right] - \underbrace{\int_t^{T} \mathbb{E}^{\mathbb{P}}\left[ \color{orange}\log{\frac{F_s}{F_t}}\color{black} d \color{blue} VS_s(T - s)\right]}_{\color{purple}{\bigstar}} \]
Consider Merton (1976) -type models
Weeklys:
transaction cost | mean | mean CI left | mean CI right |
---|---|---|---|
daytime trading profits | |||
no | -0.13 | -0.33 | 0.13 |
yes | -0.97 | -1.35 | -0.46 |
overnight trading profits | |||
no | 0.90 | 0.33 | 1.35 |
yes | 0.49 | 0.03 | 0.82 |
weekend trading profits | |||
no | 2.04 | 0.54 | 3.34 |
yes | 0.95 | -0.10 | 2.12 |
\[ s_t = \color{Maroon}\alpha\color{black} + \beta_m r_{mt} + \beta_d r_{dt} + \beta_v v_t + \eta_t \]
ON | ON | ON | WKND | WKND | WKND | |
---|---|---|---|---|---|---|
Predictors | Estimates | Estimates | Estimates | Estimates | Estimates | Estimates |
\(\alpha\) | 0.67 *** | 0.62 *** | 0.37 *** | 2.44 *** | 2.55 *** | 0.24 |
\(r_{mt}\) | 4.79 *** | 3.17 | 2.08 | 7.13 *** | 3.91 *** | 0.88 |
\(r_{dt}\) | 1.40 | 0.27 | 2.49 ** | 1.80 * | ||
\(v_t\) | 0.04 *** | 0.05 *** | ||||
Observations | 730 | 730 | 730 | 263 | 263 | 263 |
R2 / R2 adjusted | 0.252 / 0.251 | 0.268 / 0.266 | 0.602 / 0.600 | 0.377 / 0.375 | 0.403 / 0.399 | 0.799 / 0.797 |
|
ON | ON | ON | WKND | WKND | WKND | |
---|---|---|---|---|---|---|
Predictors | Estimates | Estimates | Estimates | Estimates | Estimates | Estimates |
\(\alpha\) | 0.26 | 0.22 | -0.04 | 1.44 *** | 1.54 *** | -0.42 |
\(r_{mt}\) | 4.93 *** | 3.45 * | 2.35 | 7.48 *** | 4.38 *** | 1.82 ** |
\(r_{dt}\) | 1.28 | 0.14 | 2.39 ** | 1.81 ** | ||
\(v_t\) | 0.04 *** | 0.04 *** | ||||
Observations | 730 | 730 | 730 | 263 | 263 | 263 |
R2 / R2 adjusted | 0.279 / 0.278 | 0.293 / 0.291 | 0.648 / 0.647 | 0.447 / 0.445 | 0.473 / 0.469 | 0.780 / 0.777 |
|
trading period | transaction cost | \(cor(s_t, r_t^3)\) |
---|---|---|
overnight | no | 0.55 |
yes | 0.54 | |
weekend | no | 0.76 |
yes | 0.84 |
skew\(_{\text{night}}\) | variance\(_{\text{night}}\) | |
---|---|---|
Predictors | Estimates | Estimates |
intercept | -0.09 *** | -0.04 |
wknd | 0.16 * | 0.28 *** |
\(r_{m,\text{day}}^3\) | -0.20 *** | -0.13 *** |
\(BV_{\text{day}}\) | 0.34 *** | 0.19 *** |
\((RV - BV)_{\text{day}}\) | 0.09 ** | 0.10 ** |
Observations | 997 | 997 |
R2 / R2 adjusted | 0.199 / 0.196 | 0.093 / 0.090 |
|
\[ \mathbb{E}^{\mathbb{P}}_t[S_{t,T}] - \left[\underbrace{-\frac{1}{2}\varphi''_t(0,T - t) - \varphi'_t(0, T - t)}_{\color{green}{\bigstar}} - \underbrace{\int_t^{T} \color{orange}\log{\frac{F_s}{F_t}}\color{black} d \color{blue} \varphi'_s(0,T - s)}_{\color{purple}{\bigstar}}\right] \]
Hedging exposure to jump skewness exposes trader to volatility price drivers.
ON | ON | WKND | WKND | |
---|---|---|---|---|
Predictors | Estimates | Estimates | Estimates | Estimates |
\(\alpha\) | 0.08 * | 0.07 * | 0.47 *** | 0.48 *** |
\(r_{mt}\) | 0.65 *** | 0.29 | 0.81 *** | 0.62 ** |
\(r_{dt}\) | 0.31 * | 0.14 | ||
Observations | 730 | 730 | 263 | 263 |
R2 / R2 adjusted | 0.155 / 0.153 | 0.180 / 0.177 | 0.222 / 0.219 | 0.226 / 0.220 |
|
ATM IV quantile | ATM IV | relative margin requirement |
---|---|---|
0.10 | 0.10 | 0.15 |
0.50 | 0.15 | 0.38 |
0.99 | 0.52 | 0.97 |
Andersen, TorbenG., Nicola Fusari, and Viktor Todorov. 2017. “Short-Term Market Risks Implied by Weekly Options.” The Journal of Finance 72 (3): 1335–86. https://doi.org/10.1111/jofi.12486.
Andersen, Torben G., Viktor Todorov, and Nicola Fusari. 2015. “The risk premia embedded in index options.” Journal of Financial Economics 117 (3): 558–84. https://doi.org/http://dx.doi.org/10.1016/j.jfineco.2015.06.005.
Arditti, Fred D. 1967. “RISK AND THE REQUIRED RETURN ON EQUITY.” The Journal of Finance 22 (1): 19–36. https://doi.org/10.1111/j.1540-6261.1967.tb01651.x.
Barro, Robert J. 2006. “Rare Disasters and Asset Markets in the Twentieth Century.” The Quarterly Journal of Economics 121 (3). Oxford University Press: pp. 823–66.
Barro, Robert J., and Gordon Y. Liao. 2019. “Tractable Rare Disaster Probability and Options-Pricing.” Finance and Economics Discussion Series. https://doi.org/10.17016/feds.2019.073.
Barro, Robert J, and Jose F Ursúa. 2008. “Macroeconomic Crises since 1870.” Brookings Papers on Economic Activity 39 (1 (Spring): 255–350. https://ideas.repec.org/a/bin/bpeajo/v39y2008i2008-01p255-350.html.
Bollerslev, Tim, Sophia Zhengzi Li, and Viktor Todorov. 2016. “Roughing up beta: Continuous versus discontinuous betas and the cross section of expected stock returns.” Journal of Financial Economics 120 (3): 464–90. https://doi.org/10.1016/j.jfineco.2016.02.001.
Bollerslev, Tim, and Viktor Todorov. 2014. “Time-varying jump tails.” Journal of Econometrics 183 (2): 168–80. https://doi.org/http://dx.doi.org/10.1016/j.jeconom.2014.05.007.
Bollerslev, Tim, Viktor Todorov, and Lai Xu. 2015. “Tail risk premia and return predictability.” Journal of Financial Economics 118 (1): 113–34.
Breeden, Douglas T, and Robert H Litzenberger. 1978. “Prices of State-contingent Claims Implicit in Option Prices.” The Journal of Bussiness 51 (4): 621–51.
Carr, P., and D. Madan. 2001. “Optimal Positioning in Derivative Securities.” Quantitative Finance 1 (1): 19–37. https://doi.org/10.1080/713665549.
Drechsler, Itamar. 2013. “Uncertainty, Time-Varying Fear, and Asset Prices.” The Journal of Finance 68 (5): 1843–89. https://doi.org/10.1111/jofi.12068.
Gârleanu, Nicolae, Lasse Heje Pedersen, and Allen M. Poteshman. 2009. “Demand-Based Option Pricing.” Review of Financial Studies 22 (10): 4259–99. https://doi.org/10.1093/rfs/hhp005.
Harvey, Campbell R, and Akhtar Siddique. 2002. “Conditional Skewness in Asset Pricing Tests.” The Journal of Finance 55 (3): 1263–95. https://doi.org/10.1111/0022-1082.00247.
He, Zhiguo, Bryan Kelly, and Asaf Manela. 2017. “Intermediary Asset Pricing: New Evidence from Many Asset Classes.” Journal of Financial Economics 126 (1): 1–35. https://doi.org/10.1016/j.jfineco.2017.08.002.
Itakura, F, and S Saito. 1968. “Analysis synthesis telephony based on the maximum likelihood method.” In Proceedings of the 6th International Congress on Acoustics, 17:C17–C20. IEEE.
Jones, Christopher S., and Joshua Shemesh. 2018. “Option Mispricing around Nontrading Periods.” Journal of Finance. https://doi.org/10.1111/jofi.12603.
Kelly, Bryan, and Hao Jiang. 2014. “Tail risk and asset prices.” Review of Financial Studies 27 (10): 2841–71. https://doi.org/10.1093/rfs/hhu039.
Khajavi, Ali Noori. 2017. “The econometrics of realized divergence.” PhD thesis, Università Bocconi.
Kraus, Alan, and Robert H Litzenberger. 1976. “Skewness Preference and the Valuation of Risk Assets.” Journal of Finance 31 (4): 1085–1100.
Merton, Robert C. 1976. “Option pricing when underlying stock returns are discontinuous.” Journal of Financial Economics 3 (1-2): 125–44. https://doi.org/10.1016/0304-405X(76)90022-2.
Muravyev, Dmitriy, and Xuechuan (Charles) Ni. 2019. “Why do option returns change sign from day to night?” SSRN Scholarly Paper. Journal of Financial Economics, no. ID 2820264 (September). Rochester, NY: Social Science Research Network. https://doi.org/10.1016/j.jfineco.2018.12.006.
Muravyev, Dmitriy, and Neil D. Pearson. 2015. “Option Trading Costs Are Lower than You Think.” SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2580548.
Schneider, Paul, and Fabio Trojani. 2019. “Divergence and the Price of Uncertainty.” Journal of Financial Econometrics 17 (3): 341–96. https://doi.org/10.1093/jjfinec/nby021.
Schneider, Paul, Christian Wagner, and Josef Zechner. 2016. “Low Risk Anomalies?” SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2858933.
Schreindorfer, David. 2014. “Tails, Fears, and Equilibrium Option Prices.” Available at SSRN: https://ssrn.com/abstract=2358157.
Segal, Gill, Ivan Shaliastovich, and Amir Yaron. 2015. “Good and bad uncertainty: Macroeconomic and financial market implications.” Journal of Financial Economics 117 (2): 369–97.
Tsai, Jerry, and Jessica A. Wachter. 2016. “Rare Booms and Disasters in a Multisector Endowment Economy.” In Review of Financial Studies, 29:1113–69. 5. https://doi.org/10.1093/rfs/hhv074.